Orbita

Ivan Haefliger, MD, FEBO

Holbeins-Praxis Klinik Basel
&
School of Medicine, University of Basel, Basel
Anatomy
Anatomy

- Orbita is a pear-shaped cavity, the stalk of this pear is the optic canal

- Within the orbita the length of the optic nerve (25 mm) is longer than the distance between the globe and the optic canal (18 mm)

- This allows for significant forward displacement of the globe (proptosis) without excessive stretching of the optic nerve
Clinical Signs in Orbital Diseases
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Soft Tissue Involvement

Signs
- lid and periorbital oedema
- ptosis
- chemosis (oedema of the conjunctiva and caruncle)
- epibulbar injection

Common Causes
- thyroid eye disease
- orbital inflammatory diseases
- obstruction to venous drainage
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Proptosis

Abnormal protrusion of the globe (which may be caused by retrobulbar lesions)

• Axial proptosis

• Eccentric proptosis

• Asymmetrical proptosis
 – is best detected by looking down at the patient from above and behind
Proptosis

Hertel exophthalmometer

- Corneal apexes are visualized in mirrors and degree of ocular protrusion is read from a scale

- Reading greater than 20 mm are indicative of proptosis

- Difference of 2 mm between the two eyes is suspicious
Proptosis

Hertel exophthalmometer

- Corneal apexes are visualized in mirrors and degree of ocular protrusion is read from a scale
- Reading greater than 20 mm are indicative of proptosis
- Difference of 2 mm between the two eyes is suspicious
Proptosis

Pseudo-proptosis (false impression of proptosis)

- Facial asymmetry
- Severe ipsilateral enlargement of the globe
 - high myopia
 - buphthalmos
- Ipsilateral lid retraction
- Contralateral enophthalmos
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Enophthalmos

- Implies recession of the globe within the orbit:
 - Structural abnormalities of the orbital walls
 - post-traumatic, such as blow-out fractures of the orbital floor, congenital, or inflammatory, silent sinus syndrome
 - Atrophy of the orbital contents
 - radiotherapy, scleroderma, or eye poking (oculodigital sign) in blind infants
 - Sclerosing lesions of the orbita
 - schirrous carcinoma, chronic inflammatory orbital disease

- Pseudo-enophthalmos may be caused by phthisis bulbi or micro-phthalmos
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Dystopia

• Globe displacement in the **coronal plane**
 – usually extra-conal orbital mass (lacrimal gland tumor)

• Horizontal dystopia
 – distance from midline (nose) to the nasal limbus

• Vertical dystopia
 – distance along vertical scale perpendicular to a horizontal line placed over the bridge of the nose
Dystopia

• Globe displacement in the coronal (frontal) plane
 – usually extra-conal orbital mass (lacrimal gland tumor)

• Horizontal dystopia
 – distance from midline (nose) to the nasal limbus

• Vertical dystopia
 – distance along vertical scale perpendicular to a horizontal line placed over the bridge of the nose
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Ophthalmoplegia

- Is a paralysis or weakness of one or more of the muscles that control the eyes movements

Common Causes
- *An orbital mass*
- *A restrictive myopathy*
 - thyroid eye disease
 - orbital myositis
Ophthalmoplegia

- **Oculomotor nerve (third cranial nerve) involvement in the:**
 - cavernous sinus
 - carotid-cavernous fisutla
 - superior orbital fissure
 - Tolosa-Hunt syndrome
 - posterior orbit
 - malignant lacrimal gland tumor

- **Incarceration** of extraocular muscles or fascia in a blowout fracture
Ophthalmoplegia

Restrictive versus Neurological

• **Forced duction test**
 – the insertion muscle is grasped with forceps and the globe rotated in the direction of limited mobility
 – the test is repeated in the unaffected eye
 – it can be painful, therefore a cotton pledged soaked with anesthetic should be applied on muscles to be tested (5 minutes)

• **Positive result:**
 – difficulty to move the eye globe indicates a restrictive problem

• **Negative result:**
 – no resistance suggests a neurological cause
Ophthalmoplegia

Right eye is in primary adduction deviation

In dextroversion, there is limited abduction

Mechanical restriction: Test is positive

No mechanical restriction: Test is negative
Ophthalmoplegia

Restrictive versus Neurological

- **Differential intraocular pressure test**
 - IOP in the primary position of gaze
 - IOP when patient looks into the direction of limited mobility
 - less discomfort and end-point more objective than forced duction

- **Positive result:**
 - ≥ 6 mm Hg increase, compression transmitted by muscle, suggests restriction

- **Negative result:**
 - < 6 mm Hg suggests a neurological lesion
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Dynamic Properties

- **Increasing venous pressure** may induce or exacerbate proptosis in patients who have orbital venous anomalies or in infants with capillary orbital haemangiomas
 - dependent head position
 - Valsalva maneuver
 - jugular compression

- **Pulsation** is caused either by an arterio-venous communication (with bruit) or a defect in the orbital roof (no bruit)
 - mild pulsation is best detected on the slit-lamp, particularly when performing applanation tonometry

- **Bruit**, a sign of carotid-cavernous fistula, can be abolished by compressing the ipsilateral carotid artery on the neck
Clinical Signs in Orbital Diseases

- Soft Tissue Involvement
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia
- Dynamic Properties
- Fundus Changes
Fundus Changes

- **Optic nerve swelling**
 - may be initial feature of compressive optic neuropathy

- **Optic atrophy**, a feature of severe compressive optic neuropathy
 - thyroid eye disease and optic nerve tumors
Fundus Changes

- **Optociliary collaterals** are large tortuous vessels (pre-existing capillaries) diverting blood from the central retinal venous to the peripapillary choroidal circulation

 - May be associated with intraorbital optic nerve compression most commonly optic nerve sheath meningioma

 - Also associated with optic nerve glioma, cavernous haemangioma, central retinal vein occlusion, idiopathic intracranial hypertension
Fundus Changes

- **Choroidal folds** are a series of roughly parallel alternating light and dark delicate lines of striae at the posterior pole.

- Can occur in a wide variety of orbital lesions including tumors, dysthyroid ophthalmopathy, inflammatory conditions and mucoceles.

- Usually asymptomatic although some patients develop an increase in hypermetropia.
Special Investigations
CT Scan

- **CT-Scan** is useful to illustrate bony structures and the location and size of space-occupying lesions.

- **CT-Scan** is useful in orbital trauma as it can detect small fractures, foreign bodies, blood, extraocular muscle herniation, and emphysema.

- **CT-Scan** is, however, unable to distinguish different pathological soft tissue masses which are radiologically isodense.
MRI & Fine Needle Biopsy

- **MRI** can image orbital apex lesions and intracranial extension of orbital tumors.

- **MRI** can assess some inflammatory activity in thyroid eye disease.

- **Fine needle biopsy**, performed under CT guidance using a 23-gauge needle can be of value in patients with suspected orbital metastases and in those with orbital invasion by neoplasms from contiguous structures.
Causes of Orbital Disease
Cause of Orbital Disease

(1041 Patients at Moorfields Eye Hospital)

<table>
<thead>
<tr>
<th>Cause</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid eye disease (TED)</td>
<td>178</td>
</tr>
<tr>
<td>Vascular anomalies</td>
<td>148</td>
</tr>
<tr>
<td>Idiopathic orbital inflammatory disease (pseudotumors)</td>
<td>87</td>
</tr>
<tr>
<td>Neoplasm (excluding lacrimal gland)</td>
<td>82</td>
</tr>
<tr>
<td>Infections</td>
<td>82</td>
</tr>
<tr>
<td>ENT problems</td>
<td>69</td>
</tr>
<tr>
<td>Fracture and trauma</td>
<td>68</td>
</tr>
<tr>
<td>Lacrimal gland tumors</td>
<td>53</td>
</tr>
<tr>
<td>Dermoid and other cysts</td>
<td>46</td>
</tr>
<tr>
<td>Normal</td>
<td>43</td>
</tr>
<tr>
<td>Meningiomas</td>
<td>38</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
<td>14</td>
</tr>
<tr>
<td>Optic nerve glioma</td>
<td>13</td>
</tr>
<tr>
<td>Neurilemomas</td>
<td>10</td>
</tr>
<tr>
<td>Bone change</td>
<td>10</td>
</tr>
<tr>
<td>Others</td>
<td>100</td>
</tr>
</tbody>
</table>
Thyroid Eye Disease
Thyrotoxicosis

- Thyrotoxicosis (Graves’ disease) is an autoimmune disorder, women > men (5/1), 3rd - 4th decade

- Thyroid eye disease (TED) affects 25-50% of patients with Graves’ disease, of which 5% severely

- TED may precede, coincide with, or follow hyperthyroidism

- TED can vary from being merely a nuisance to blindness
Risk Factors

• Once a patient has Graves’ disease, the major risk factor for developing TED is **smoking**

• The greater the number of cigarettes smoked per day, the greater the risk, and giving up smoking seems to reduce the risk

• Women are five times more likely to be affected by TED than men

• Radioactive iodine used to treat hyperthyroidism can worsen TED
Pathogenesis

• TED is an organ-specific autoimmune reaction in which a humoral agent (IgG) produces cellular inflammation with glycosaminoglycan and edema. This in the:

• **A) Extra-ocular muscles**
 – Enlarged muscles can compress the optic nerve, or with time, enlarged muscles can develop fibrosis that may lead to restrictive myopathy and diplopia

• **B) Intra-orbital content** (interstitial tissue, fat, lacrimal gland)
 – The increase in the volume of the intra-orbital content may lead to a secondary elevation of *INTRA-ORBITAL* pressure
Main Clinical Manifestations

Two Clinical Stages

- **A) Congestive stage** (inflammatory), in which the eyes are red and painful. This stage tends to resolve within 3 years and only 10% of patients develop serious long-term ocular problems

- **B) Fibrotic stage** (quiescent) in which the eyes are white but where a painless motility defect may be present
Main Clinical Signs in TED

- Soft Tissue Involvement and Lid Retraction
- Proptosis
- Enophthalmos
- Dystopia
- Ophthalmoplegia (Restrictive Myopathy)
- Dynamic Properties
- Fundus Changes (Optic Neuropathy)
Soft Tissue Involvement

- **Symptoms**
 - Grittiness
 - Photophobia
 - Lacrimation
 - Retrobulbar discomfort

- **Signs**
 - Epibulbar hyperaemia is a sensitive sign of inflammatory activity
 - Intensive focal hyperaemia may outline the insertions of the horizontal recti
Soft Tissue Involvement

- **Signs** (continued)
 - Periorbital swelling behind orbital septum which may be associated with chemosis and prolapse of retro-spetal fat into the eyelids
 - Superior limbic keratoconjunctivitis
 - Keratoconjunctivitis sicca secondary to infiltration of the lacrimal gland
Soft Tissue Involvement

Treatment

• **Lubricants** for superior limbic keratokonjunctivitis, corneal exposure, and dryness

• **Head elevation** with three pillows during sleep to reduce periorbital oedema

• **Eyelid taping** during sleep may alleviate mild exposure keratopathy
Lid Retraction

Reported in up to 50% of patients with Graves’ disease as a result of different postulated mechanisms:

• Fibrotic contracture of the levator

• Secondary over-action of the levator-superior rectus complex

• Humorally-induced over-action of Müller’s muscle
Lid Retraction

Signs

- **Dairample sign** is lid retraction in primary gaze

- **Kocher sign** describes a staring and frightening appearance of eyes which is particularly marked on attentive fixation

- **Von Graefe sign** signifies retarded descent of the upper lid on down-gaze
Lid Retraction

Management

• Mild lid retraction does not require treatment because it frequently improves spontaneously

• Surgery may be considered in patients with significant but stable lid retraction after addressing proptosis and strabismus

• Recession/desinsertion of the levator aponeurosis or recession of lower lid retractors ± hard palate graft
Proptosis

Signs

- Proptosis is axial
- Unilateral or bilateral
- Symmetrical or asymmetrical
- Frequently permanent

- May compromise lid closure which can result in:
 - an exposure keratopathy
 - a corneal ulceration
 - an infection

- Can lead to blindness
Proptosis

Management

• Management is controversial. Some favor early surgical decompression whereas others consider surgery only when non-invasive methods have failed or are inappropriate.

• Systemic steroids
 – **Oral prednisolone** 80-100 mg/day (response in 48 hours), maximal response in 2-8 weeks, in principle not more than 3 months.
 – **Intravenous methylprednisolone** 500 mg repeated for 3 days usually reserved for compressive optic neuropathy.
Proptosis

Management

• **Radiotherapy**
 – In addition to steroids or when steroids are contraindicated. A positive response is usually evident within 6 weeks with a maximal improvement by 4 months

• **Combined Therapy**
 – With irradiation, azathioprine (antimetabolite), and low-dose prednisolone may be more effective than steroids or radiotherapy alone
Proptosis

- **Surgical decompression** may be considered either as primary treatment or when non-invasive methods are ineffective, such as for cosmetically unacceptable proptosis in the quiescent phase

 - **Two-walls** (anthral-ethmoidal), involves removal of the floor and the posterior portion of the medial wall (3-6 mm)
 - **Three-walls**, involves an anthral-ethmoidal decompression and removal of the lateral wall (6-10 mm)
 - **Four-walls**, involves a three-walls decompression, removal of the lateral half of the orbital roof and a large portion of the sphenoidal at the apex of the orbit (10-16 mm)
Restrictive Myopathy

- Up to 30-50% of patients with TED develop ophthalmoplegia
- Initially due to inflammatory oedema and later by fibrosis
- In order of decreasing frequency the four ocular motility defects are:
 - Elevation
 - Abduction
 - Depression
 - Adduction
Restrictive Myopathy

Surgical Treatment

- The indication is diplopia in the primary gaze or reading positions of gaze, provided the disease is quiescent and the angle of deviation has been stable for at least 6 months.

- The goal is to achieve single vision in the primary and reading positions.

- The technique most commonly involves recession of the inferior and/or medial recti.
Optic Neuropathy

- Is a serious complication but uncommon

- Compression of the optic nerve or its blood supply at the orbital apex by the congested and enlarged recti

- May occur in the absence of significant proptosis

- May lead to severe, permanent visual impairment (blindness)
Optic Neuropathy

- **Presentation** is usually with impairment of central vision
- Patients should *daily* monitor their own visual function
- **Visual acuity** is usually reduced, but not invariably, and is associated with
 - relative afferent pupillary defect
 - colour desaturation
 - diminished light brightness appreciation
Optic Neuropathy

- **Visual field defects**
 - may be central or paracentral and combined with nerve fiber bundle defects (DD: POAG)

- **Optic disc**
 - usually normal, occasionally swollen and rarely atrophic

- **Treatment**
 - methyl-prednisolone i.v.

- **Orbital decompression**
 - may be considered if steroids are ineffective or inappropriate
Infections

- Preseptal Cellulitis
- Orbital Cellulitis
- Rhino-Orbital Mucormycosis
Preseptal Cellulitis

- Subcutaneous tissues infection anterior to the orbital septum
- Can progress to orbital cellulitis
- **Causes:**
 - **skin trauma**
 - laceration, insect bites (*S. aureus* or *S. pyogenes*)
 - **spread of local infection**
 - from a hordeolum or dacryocystitis
 - **from remote infection**
 - hematogenous spread from the respiratory tract or middle ear infection
Preseptal Cellulitis

- **Signs** are unilateral, tender and red periorbital oedema
- **CT** shows opacifications anterior to the orbital septum
- Unlike orbital cellulitis, proptosis and chemosis are absent, visual acuity, pupillary reactions and ocular motility are **unimpaired!!!**
- **Treatment** is usually with oral co-amoxicilline
Bacterial Orbital Cellulitis

- Bacterial orbital cellulitis is *life-threatening* infection of the soft tissues behind the orbital septum

- Can occur any age but is more common in children
 - S. pneumoniae
 - S. aureus
 - S. pyogenes
 - H. influenzae
Bacterial Orbital Cellulitis

Pathogenesis
- **Sinus-related**
 - most commonly ethmoidal in children and young adults
- **Extension of preseptal cellulitis**
- **Local spread**
 - dacryocystitis, midfacial, or dental infection
- **Haematogenous spread**
- **Post-traumatic**
 - within 72 hours of an injury that penetrates the orbital septum
 - may be masked by associated laceration or haematoma
- **Post-surgical**
 - retinal, lacrimal, or orbital surgery
Bacterial Orbital Cellulitis

- **Presentation**
 - rapid onset of severe malaise, fever, pain, and visual decrease

- **Signs**
 - unilateral tender, warm and red periorbital oedema
 - **proptosis** which is often obscured by lid swelling, is most frequently lateral and downwards
 - painful **ophthalmoplegia**
 - optic nerve dysfunction

- **CT** shows pre-setptal and orbital opacifications
Bacterial Orbital Cellulitis

• **Presentation**
 – rapid onset of severe malaise, fever, pain, and visual decrease

• **Signs**
 – unilateral tender, warm and red periorbital **oedema**
 – **proptosis** which is often obscured by lid swelling, is most frequently lateral and downwards
 – painful **ophthalmoplegia**
 – optic nerve dysfunction

• **CT** shows pre-setptal and orbital opacifications
Bacterial Orbital Cellulitis

- **Ocular complications**
 - includes exposure keratopathy, raised IOP, occlusion of the central retinal artery or vein, endophthalmitis, and optical neuropathy
- **Intracranial complications** (rare)
 - include meningitis, brain abscess, and cavernous sinus thrombosis
- **Sub-periosteal abscess**
 - is most frequently located along the medial orbital wall
- **Orbital abscess**
 - usually occurs in post-traumatic or postoperative cases
Rhino-Orbital Mucormycosis

- **Mucormycosis** is a very rare infection caused by fungi (Mucoraceae), usually seen
 - by diabetic ketoacidosis, or
 - by immunosuppression

- This aggressive and **potentially lethal** infection is acquired by the inhalation of spores, giving rise to an upper respiratory infection
Rhino-Orbital Mucormycosis

- The infection then spreads to the contiguous sinuses and subsequently to the orbit and brain

- Invasion of blood vessels by the hyphae results in **occlusive vasculitis** with **ischemic infarction** of orbital tissues
Rhino-Orbital Mucormycosis

- **Presentation** is with gradual onset of facial and periorbital swelling, diplopia and visual loss

- **Signs**
 - ischemic infarction (**black eschar**) which may develop on the palate, turbinate, nasal septum, skin and eyelids
 - ophthalmoplegia

- **Complications**
 - retinal vascular occlusion
 - multiple cranial nerve palsies
 - cerebrovascular occlusion
Rhino-Orbital Mucormycosis

Treatment

- Amphoterecin i.v.
- Amphoterecin irrigation of the involved areas
- Wide excision of devitalized and necrotic tissues
- Adjunctive hyperbaric oxygen may be helpful
- Correction of the underlying metabolic defect, if possible
- Exenteration may be required in severe unresponsive cases
Inflammation

- Idiopathic Orbital Inflammatory Disease
 “Pseudo-tumor”

- Acute Dacryoadenitis

- Orbital Myositis
Idiopathic Orbital Inflammatory Disease

- **IOID** previously referred as *orbital pseudotumor* is an uncommon disorder characterized by non-neoplastic, non-infectious, space-occupying, orbital lesion.

- The inflammatory process may involve any or all of the orbital soft tissues, resulting for example, in myositis, dacryoadenitis, optic perineuritis, or scleritis.
Idiopathic Orbital Inflammatory Disease

- Histopathological analysis reveals pleomorphic cellular inflammatory infiltration followed by reactive fibrosis

- No correlation between histology and the disease course
Idiopathic Orbital Inflammatory Disease

- **Presentation** is in the 3rd to 6th decades with acute periorbital redness, swelling and pains

- **Signs**
 - congestive proptosis and
 - ophthalmoplegia may occur in severe courses
 - optic nerve dysfunction if the inflammation involves the posterior orbit
Idiopathic Orbital Inflammatory Disease

- CT shows ill-defined orbital opacification and loss of definition of contents
Idiopathic Orbital Inflammatory Disease

Course

• Spontaneous remission after a few weeks without sequels
• Prolonged intermittent activity episodes with remission
• Frozen orbit characterized
 – by ophthalmoplegia,
 – which may be associated with ptosis, and
 – visual impairment caused by optic nerve involvement
Idiopathic Orbital Inflammatory Disease

Treatment

- **Observation**, for relatively mild disease, in anticipation of spontaneous remission

- **Biopsy** in persistent cases to confirm the diagnosis and to rule out neoplasia

- **NSAIDs** are often effective and should precede steroid therapy
Idiopathic Orbital Inflammatory Disease

Treatment

- **Systemic steroids** only after the diagnosis has been confirmed
 - they can mask an infection or Wegner granulomatosis

- **Oral prednisolone**, initially 80-100 mg/day
Idiopathic Orbital Inflammatory Disease

Treatment

• **Radiotherapy** may be considered if there has been no improvement after 2 weeks of adequate steroid therapy.

• **Antimetabolites** such as methotrexate or mycophenolate mofetil may be necessary in the context of resistance to both steroids and radiotherapy.
Idiopathic Orbital Inflammatory Disease

Differential Diagnosis

- **Bacterial orbital cellulitis**
 (antibiotic trial)
- **Severe acute TED** (often bilateral)
- **Systemic disorders** (Wegner granulomatosis, polyarteritis nodosa, and Waldenström macroglobulinaemia)
- **Malignant orbital tumors**
 (particularly metastatic)
- **Ruptured dermoid cyst**
 (secondary painful granulomatous inflammation reaction)
Acute Dacryoadenitis

- Acute dacryoadenitis commonly occurs in isolation, resolves spontaneously and does not require treatment
- **Presentation** is with acute discomfort in the region of the lacrimal gland
Acute Dacryoadenitis

Signs

- S-shaped ptosis and mild downward and inward dystopia
- Tenderness over the lacrimal gland fossa
- Injection of the palpebral portion of the lacrimal gland and adjacent conjunctiva
- Lacrimal secretion may be reduced
Acute Dacryoadenitis

- Is most commonly due to a **viral lacrimal gland infection** caused by mumps, infectious mononucleosis, and less commonly, by a bacteria

Differential Diagnosis

- **Ruptured dermoid cyst** may cause localized inflammation in the region of the lacrimal gland

- **Malignant lacrimal gland tumors** may cause pain but the onset is not usually acute